SAMPLE_DIFFERENCE_ERROR-calculatetheuncertaintyinthedifferencebetween2samples[SD,SDE]=vlt.math.sample_difference_error(X1,X2,...)ComputesthemeansampledifferenceSDandthe"error"or"uncertainty"inthatdifferenceSDEinthemeanofX2minusthemeanofX1.Thisfunctiontakesname/valuepairsthatmodifythebehaviorofthefunction.Parameter(default)|Description--------------------------------------------------------------------------------algorithm('assume_normality')|If'assume_normality',then|usesstandarderrorbasedon'normal'assumption|(thatis,SDE=sqrt(SME1^2+SME2^2),where|SMEisstandarderrorofthemean.|If'bootstrap',then|simulationsareperformedthatdrawfromsamplesX1|andX2withreplacement(samplesizesremainfixed)|andthedifferenceinmeanscomputed.bootstrap_samples(10000)|Numberofsimulationstoperformwhenbootstrapisusedbootstrap_confidence... | The bootstrap confidence interval to report for SDE([cdf('norm',-1,0,1)... | (the default is the percentiles that correspond tocdf('norm',1,0,1)])|+/-1standarddeviationaroundthenormal|distribution).SDEishalfofthis|confidenceinterval.meanfunction('nanmean')|Themeanfunctiontouse(coulduse'nanmedian')Example:x1=randn(50,1)+5;x2=randn(50,1)+0;[sd,sde]=vlt.math.sample_difference_error(x1,x2),% show the bootstrap version is similar to standard when data is normally distributed[sdb,sdeb]=vlt.math.sample_difference_error(x1,x2,'algorithm','bootstrap'),