vlt.stats.manova-MultivariateAnalysisofVariance[STATS,H]=vlt.stats.manova(X,G),or[STATS,H]=vlt.stats.manova(X,G,ALPHA)Determineswhetherthemeansofgroupsofmultivariatedatapointsarethesame,usingWilks' criterion. Each N-dimensional data point is a row in X,sothatXisNxP,wherePisthetotalnumberofdatapoints.Eachdatapointbelongstoagroup,indicatedinvectorG,whichshouldbe1XP.ALPHAislevelofsignificance,and,IfALPHAisnotgiven,0.01isassumed.STATSisastructwiththefollowingelements:DF_between=degreesoffreedomamongsamplesm,or(K-1),K==numofgroupsDF_within=degreesoffreedomwithinsamples,orN-KDF_TOTAL=totaldegreesoffreedomN-1B=matrixofsumofsquaresandproducts(SSP)betweensamplesW=matrixofSSPwithinsamplesT=matrixoftotalSSP,notethatT==W+Bratio=|W|/|T|,orratiotobecomparedtoWilks' statisticP=ProbabilityofdataunderhypothesisthatmeansareequalH=0ifmeansareSAME,1ifDIFFERENTX__=GrandmeanofdataX_=Meanofeachgroup(KxP)N=Numberofitemsineachgroup(Kx1)E=Eigenvaluesforcanonicalvariateprojection(inv(W)*B)V=Eigenvectorscorresp.totheseeigenvaluesVV=Eigenvectorsnormalized(byW/(N-K))forcanonicalv.proj.SeeChapter12of_MultivariateAnalysis_,KVMardia,JTKent,JMBibby,AcademicPress,London,1979.Note:Theeigenvectorcorrespondingtothelargesteigenvalueofinv(W)*BisthefirstcanonicalvariateorFisher's linear discriminant function.Projectingontothisvariateisusefulforvisualizingthedifferencesamonggroupsofdata.Theothercanonicalvariatesaretheeigenvectorscorrespondingtotheeigenvaluesindescendingorderofmagnitude.(Seesec.11.5ofabovebook.)SteveVanHooser,2003