directionselectivityNcell_learning2
DIRECTIONSELECTIVITYNCELL_LEARNING2
OUT = DIRECTIONSELECTIVITYNCELL_LEARNING2
Observe an N-input process develop direction selectivity
There is a single feed-forward inhibitory neuron
One can also adjust the parameters using:
OUT = DIRECTIONSELECTIVITY4CELL_LEARNING1(PARAM1NAME, PARAM1VALUE, ...)
The following parameters are adjustable (default value in ()):
---------------------------------------------------------------------
latency (0.200) | Latency between 1st and 2nd columns
lag (0.200) | Lag between stim hitting 1st and 2nd rows
Gmax_max (5e-9) | Maximum weights
Gmax_min (0) | Minimum weights
classic_stdp (1) | 0/1 use classic stdp
N (1) | Number of different positions
R (1) | Number of different latencies
Gmax_initial (3e-9) | 1xN*R matrix of initial synaptic weights
Gmax_initial_inhib(3e-9)| 1xN*R matrix of initial synaptic weights
synapseparams | synapse parameters
synapseparams_inhib | synapse parameters for synapses onto inhibitory cells
{'V_rev',-0.080} |
intfireparams | intfire parameters
intfireparams_inhib | intfire parameters for inhibitory cell
ISyn_Gmax_initial (1.5e-9)| Intial value of inhibitory cell synapse onto excitatory cell
ISyn_change (1.05) | Multilpicative Change in inhibitory synapse conductance at each iteration
ISyn_Max (Inf) | Ceiling for I to E weight
dt (0.0001) | time resolution
trials (100) | number of trials
plot_as_we_go (1) | 0/1 plot to a figure as we go?
plasticity_method_inhib('') Method for inhibitory plasticity
unidir (1) | unidirectional trainin (1) or bi-directional training (2)?
slow (0) | Show stimulus at half speed?
mask (1)
nreps (1)
phase ([1:N]) | Phase?